Pulled microcapillary tube resonators with electrical readout for mass sensing applications
نویسندگان
چکیده
This paper reports a microfabrication-free approach to make hollow channel mass sensors by pulling a glass capillary and suspending it on top of a machined jig. A part of the pulled section makes simple contact with an actuation node and a quartz tuning fork (QTF) which acts as a sensing node. The two nodes define a pulled micro capillary tube resonator (PμTR) simply supported at two contacts. While a piezo actuator beneath the actuation node excites the PμTR, the QTF senses the resonance frequency of the PμTR. The proposed concept was validated by electrical and optical measurements of resonant spectra of PμTR. Then, different liquid samples including water, ethanol, glycerol, and their binary mixtures were introduced into the PμTR and the resonance frequency of the PμTR was measured as a function of liquid density. Density responsivity of -3,088 Hz-g-1 cm3 obtained is comparable to those of microfabricated hollow resonators. With a micro droplet generation chip configured in series with the PμTR, size distribution of oil droplets suspended in water was successfully measured with the radius resolution of 31 nm at the average droplet radius, 28.47 μm. Overall, typical off-the-shelf parts simply constitute a resonant mass sensing system along with a convenient electrical readout.
منابع مشابه
Highly Sensitive Measurement of Liquid Density in Air Using Suspended Microcapillary Resonators
We report the use of commercially available glass microcapillaries as micromechanical resonators for real-time monitoring of the mass density of a liquid that flows through the capillary. The vibration of a suspended region of the microcapillary is optically detected by measuring the forward scattering of a laser beam. The resonance frequency of the liquid filled microcapillary is measured for ...
متن کاملTwo-curve-shaped biosensor using photonic crystal nano-ring resonators
We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...
متن کاملPerformance of monolayer graphene nanomechanical resonators with electrical readout.
The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage ca...
متن کاملRecent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges
Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a com...
متن کاملUltimate limits to inertial mass sensing based upon nanoelectromechanical systems
Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors ~Q! in the range 10<Q<10. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the u...
متن کامل